We investigate the existence of positive solutions for a class of Minkowski-curvature equations with indefinite weight and nonlinear term having superlinear growth at zero and super-exponential growth at infinity. As an example, for the equation ( u' / sqrt{1-(u')^2} )' + a(t) (e^{u^p}-1) = 0, where p > 1 and a(t) is a sign-changing function satisfying the mean-value condition int_0^T a(t) dt < 0, we prove the existence of a positive solution for both periodic and Neumann boundary conditions. The proof relies on a topological degree technique.

Positive solutions for a Minkowski-curvature equation with indefinite weight and super-exponential nonlinearity

Feltrin, Guglielmo
;
2023-01-01

Abstract

We investigate the existence of positive solutions for a class of Minkowski-curvature equations with indefinite weight and nonlinear term having superlinear growth at zero and super-exponential growth at infinity. As an example, for the equation ( u' / sqrt{1-(u')^2} )' + a(t) (e^{u^p}-1) = 0, where p > 1 and a(t) is a sign-changing function satisfying the mean-value condition int_0^T a(t) dt < 0, we prove the existence of a positive solution for both periodic and Neumann boundary conditions. The proof relies on a topological degree technique.
File in questo prodotto:
File Dimensione Formato  
Boscaggin_Feltrin_Zanolin_CCM_2023.pdf

non disponibili

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 524.35 kB
Formato Adobe PDF
524.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1217776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact