Hypergroups can be subdivided into two large classes: those whose heart coincide with the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties of the stabilizers of group actions of the heart, which play an important role in the construction of multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables of all G-hypergroups of size not larger than 5, apart of isomorphisms.
G-Hypergroups: Hypergroups with a Group-Isomorphic Heart
Fasino D.;Freni D.;
2022-01-01
Abstract
Hypergroups can be subdivided into two large classes: those whose heart coincide with the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties of the stabilizers of group actions of the heart, which play an important role in the construction of multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables of all G-hypergroups of size not larger than 5, apart of isomorphisms.File | Dimensione | Formato | |
---|---|---|---|
mathematics-10-00240.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
373.91 kB
Formato
Adobe PDF
|
373.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.