We are concerned with the blow-up analysis of mean field equations. It has been proven in [6] that solutions blowing-up at the same non-degenerate blow-up set are unique. On the other hand, the authors in [18] show that solutions with a degenerate blow-up set are in general non-unique. In this paper we first prove that evenly symmetric solutions on an arbitrary flat torus with a degenerate two-point blow-up set are unique. In the second part of the paper we complete the analysis by proving the existence of such blow-up solutions using a Lyapunov-Schmidt reduction method. Moreover, we deduce that all evenly symmetric blow-up solutions come from one-point blow-up solutions of the mean field equation on a “half” torus.
Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions
Aleks Jevnikar;
2020-01-01
Abstract
We are concerned with the blow-up analysis of mean field equations. It has been proven in [6] that solutions blowing-up at the same non-degenerate blow-up set are unique. On the other hand, the authors in [18] show that solutions with a degenerate blow-up set are in general non-unique. In this paper we first prove that evenly symmetric solutions on an arbitrary flat torus with a degenerate two-point blow-up set are unique. In the second part of the paper we complete the analysis by proving the existence of such blow-up solutions using a Lyapunov-Schmidt reduction method. Moreover, we deduce that all evenly symmetric blow-up solutions come from one-point blow-up solutions of the mean field equation on a “half” torus.File | Dimensione | Formato | |
---|---|---|---|
Bartolucci, Gui, Hu, Jevnikar, Yang - DCDS (2020).pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
475.57 kB
Formato
Adobe PDF
|
475.57 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.