Outdoor insulators may experience stress due to severe environmental conditions, such as pollution and contamination. Through the identification of partial discharges by ultrasonic noise, it is possible to assess the possibility of a power grid failure occurring. In this paper, ensemble models are used to analyze an ultrasonic signal from an ultrasonic microphone Pettersson M500. As the insulators are susceptible to developing irreversible failures, it will be evaluated whether the ultrasonic signal will remain over time, so that it is possible to assess whether the discharges being captured can result in a failure in contaminated polymeric insulators, evaluated in a high voltage laboratory under controlled conditions. The ensemble models were used in this paper because they typically require less computational effort than techniques based on deep learning and have acceptable performance for the problem at hand. The bagging, boosting, random subspace, bagging plus random subspace, and stacked generalization ensemble models are evaluated, and the best result of each model is used to compare the differences between the models. The bagging ensemble learning model proved to be faster and have lower error than other ensemble models, long short-term memory (LSTM), and nonlinear autoregressive (NAR).
Analysis of the ultrasonic signal in polymeric contaminated insulators through ensemble learning methods
Stefenon, Stefano Frizzo
;
2022-01-01
Abstract
Outdoor insulators may experience stress due to severe environmental conditions, such as pollution and contamination. Through the identification of partial discharges by ultrasonic noise, it is possible to assess the possibility of a power grid failure occurring. In this paper, ensemble models are used to analyze an ultrasonic signal from an ultrasonic microphone Pettersson M500. As the insulators are susceptible to developing irreversible failures, it will be evaluated whether the ultrasonic signal will remain over time, so that it is possible to assess whether the discharges being captured can result in a failure in contaminated polymeric insulators, evaluated in a high voltage laboratory under controlled conditions. The ensemble models were used in this paper because they typically require less computational effort than techniques based on deep learning and have acceptable performance for the problem at hand. The bagging, boosting, random subspace, bagging plus random subspace, and stacked generalization ensemble models are evaluated, and the best result of each model is used to compare the differences between the models. The bagging ensemble learning model proved to be faster and have lower error than other ensemble models, long short-term memory (LSTM), and nonlinear autoregressive (NAR).File | Dimensione | Formato | |
---|---|---|---|
Analysis_of_the_Ultrasonic_Signal_in_Polymeric_Contaminated_Insulators_Through_Ensemble_Learning_Methods.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.