Quantification of residual stress gradients can provide great improvements in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure and structural integrity. Highly focused local probe non-destructive techniques such as X-ray diffraction, electron diffraction or Raman spectroscopy have an established track record in determining spatial variations in the relative changes in residual stress with respect to a reference state for many structural materials. However, the interpretation of these measurements in terms of absolute stress values requires a strain-free sample often difficult to obtain due to the influence of chemistry, microstructure or processing route. With the increasing availability of focused ion beam instruments, a new approach has been developed which is known as the micro-scale ring-core focused ion beam-digital image correlation technique. This technique is becoming the principal tool for quantifying absolute in-plane residual stresses. It can be applied to a broad range of materials: crystalline and amorphous metallic alloys and ceramics, polymers, composites and biomaterials. The precise nano-scale positioning and well-defined gauge volume of this experimental technique make it eminently suitable for spatially resolved analysis, that is, residual stress profiling and mapping. Following a summary of micro-stress evaluation approaches, we focus our attention on focused ion beam-digital image correlation methods and assess the application of micro-scale ring-core methods for spatially resolved residual stress profiling. The sequential ring-core milling focused ion beam-digital image correlation method allows micro- to macro-scale mapping at the step of 10-1000 μm, while the parallel focused ion beam-digital image correlation approach exploits simultaneous milling operation to quantify stress profiles at the micron scale (1-10 μm). Cross-validation against X-ray diffraction results confirms that these approaches represent accurate, reliable and effective residual stress mapping methods.
A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniques
Salvati E.;
2015-01-01
Abstract
Quantification of residual stress gradients can provide great improvements in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure and structural integrity. Highly focused local probe non-destructive techniques such as X-ray diffraction, electron diffraction or Raman spectroscopy have an established track record in determining spatial variations in the relative changes in residual stress with respect to a reference state for many structural materials. However, the interpretation of these measurements in terms of absolute stress values requires a strain-free sample often difficult to obtain due to the influence of chemistry, microstructure or processing route. With the increasing availability of focused ion beam instruments, a new approach has been developed which is known as the micro-scale ring-core focused ion beam-digital image correlation technique. This technique is becoming the principal tool for quantifying absolute in-plane residual stresses. It can be applied to a broad range of materials: crystalline and amorphous metallic alloys and ceramics, polymers, composites and biomaterials. The precise nano-scale positioning and well-defined gauge volume of this experimental technique make it eminently suitable for spatially resolved analysis, that is, residual stress profiling and mapping. Following a summary of micro-stress evaluation approaches, we focus our attention on focused ion beam-digital image correlation methods and assess the application of micro-scale ring-core methods for spatially resolved residual stress profiling. The sequential ring-core milling focused ion beam-digital image correlation method allows micro- to macro-scale mapping at the step of 10-1000 μm, while the parallel focused ion beam-digital image correlation approach exploits simultaneous milling operation to quantify stress profiles at the micron scale (1-10 μm). Cross-validation against X-ray diffraction results confirms that these approaches represent accurate, reliable and effective residual stress mapping methods.File | Dimensione | Formato | |
---|---|---|---|
0309324715596700.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
5.69 MB
Formato
Adobe PDF
|
5.69 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.