The exposure of sample to Focused Ion Beam leads to Ga-ion implantation, damage, material amorphisation, and the introduction of sources of residual stress; namely eigenstrain. In this study we employ synchrotron X-ray Reflectivity technique to characterise the amorphous layer generated in a single crystal Silicon sample by exposure to Ga-ion beam. The thickness, density and interface roughness of the amorphous layer were extracted from the analysis of the reflectivity curve. The outcome is compared with the eigenstrain profile evaluated from residual stress analysis by Molecular Dynamics and TEM imaging reported in the literature.
Nanoscale structural damage due to focused ion beam milling of silicon with Ga ions
Salvati E.;
2018-01-01
Abstract
The exposure of sample to Focused Ion Beam leads to Ga-ion implantation, damage, material amorphisation, and the introduction of sources of residual stress; namely eigenstrain. In this study we employ synchrotron X-ray Reflectivity technique to characterise the amorphous layer generated in a single crystal Silicon sample by exposure to Ga-ion beam. The thickness, density and interface roughness of the amorphous layer were extracted from the analysis of the reflectivity curve. The outcome is compared with the eigenstrain profile evaluated from residual stress analysis by Molecular Dynamics and TEM imaging reported in the literature.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167577X17316683-main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
686 kB
Formato
Adobe PDF
|
686 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.