Fatigue Crack Growth Rate (FCGR) is altered by a single anomalous load exceeding cyclic maximum (Overload) or compressive load below cyclic minimum (Underload). The authors study fatigue crack acceleration due to a single compressive Underload using residual stress mapping (by synchrotron XRD) and crack closure analysis (by DIC). The relative influence and duration of these two principal causes of FCGR alteration are revealed. Validated FEA model is used for parametric analysis of the effect of baseline cyclic loading ratio and magnitude of Underload on the cyclic J-integral.

Elucidating the Mechanism of Fatigue Crack Acceleration Following the Occurrence of an Underload

Salvati E.
;
2016-01-01

Abstract

Fatigue Crack Growth Rate (FCGR) is altered by a single anomalous load exceeding cyclic maximum (Overload) or compressive load below cyclic minimum (Underload). The authors study fatigue crack acceleration due to a single compressive Underload using residual stress mapping (by synchrotron XRD) and crack closure analysis (by DIC). The relative influence and duration of these two principal causes of FCGR alteration are revealed. Validated FEA model is used for parametric analysis of the effect of baseline cyclic loading ratio and magnitude of Underload on the cyclic J-integral.
File in questo prodotto:
File Dimensione Formato  
Elucidating_the_Mechanism_of_Fatigue_Crack_Acceler.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1223780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? ND
social impact