The effects of Si content (X = 4 to 7 wt.%), heating rate (5 to 25◦C/min) and sample mass (20 to 200 mg) on determination of the thixoforming working window by differential scanning calorimetry DSC were analyzed for the Al-Xwt.%Si-4wt.%Zn, or simply AlXSi4Zn, system. The critical lower and upper temperatures for thixoforming processing were determined by applying the differentiation method to DSC heating cycle data. Lower Si content, heating rate and DSC sample mass made identification of the working window temperatures more accurate because of the sharpening of the DSC curve when lower values of these variables were used. Data obtained when lower sample masses and heating rates were used agreed better with those obtained by Calculation of Phase Diagrams, (CALPHAD) simulation (near-equilibrium Scheil condition) for all the Si contents analyzed. Larger DSC sample masses were associated with significant heterogeneity in heat transfer through the sample, leading to results similar to those for a diffuse transition, an effect enhanced by an increase in the heating rate. Since Si content represented a limitation when identifying the working window by the differentiation method, alloys with high Si content should be analyzed with lower DSC masses and lower heating rates to allow more accurate determination of the interval at conditions near those used in thixoforming operations.

The Thixoforming Process Window for Al-Si-Zn Alloys Using the Differentiation Method: The Role of Si, Heating Rate and Sample Mass

Miani F.;
2022-01-01

Abstract

The effects of Si content (X = 4 to 7 wt.%), heating rate (5 to 25◦C/min) and sample mass (20 to 200 mg) on determination of the thixoforming working window by differential scanning calorimetry DSC were analyzed for the Al-Xwt.%Si-4wt.%Zn, or simply AlXSi4Zn, system. The critical lower and upper temperatures for thixoforming processing were determined by applying the differentiation method to DSC heating cycle data. Lower Si content, heating rate and DSC sample mass made identification of the working window temperatures more accurate because of the sharpening of the DSC curve when lower values of these variables were used. Data obtained when lower sample masses and heating rates were used agreed better with those obtained by Calculation of Phase Diagrams, (CALPHAD) simulation (near-equilibrium Scheil condition) for all the Si contents analyzed. Larger DSC sample masses were associated with significant heterogeneity in heat transfer through the sample, leading to results similar to those for a diffuse transition, an effect enhanced by an increase in the heating rate. Since Si content represented a limitation when identifying the working window by the differentiation method, alloys with high Si content should be analyzed with lower DSC masses and lower heating rates to allow more accurate determination of the interval at conditions near those used in thixoforming operations.
File in questo prodotto:
File Dimensione Formato  
metals-12-00734-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.36 MB
Formato Adobe PDF
7.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1226395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact