In natural environments, plants are exposed to variable light conditions, but photosynthesis has been mainly studied at steady state and this might overestimate carbon (C) uptake at the canopy scale. To better elucidate the role of light fluctuations on canopy photosynthesis, we investigated how the chlorophyll content, and therefore the different absorbance of light, would affect the quantum yield in fluctuating light conditions. For this purpose, we grew a commercial variety (Eiko) and a chlorophyll deficient mutant (MinnGold) either in fluctuating (F) or non-fluctuating (NF) light conditions with sinusoidal changes in irradiance. Two different light treatments were also applied: a low light treatment (LL; max 650 μmol m−2 s−1) and a high light treatment (HL; max 1,000 μmol m−2 s−1). Canopy gas exchanges were continuously measured throughout the experiment. We found no differences in C uptake in LL treatment, either under F or NF. Light fluctuations were instead detrimental for the chlorophyll deficient mutant in HL conditions only, while the green variety seemed to be well-adapted to them. Varieties adapted to fluctuating light might be identified to target the molecular mechanisms responsible for such adaptations.

Does Fluctuating Light Affect Crop Yield? A Focus on the Dynamic Photosynthesis of Two Soybean Varieties

Alberti G.
Secondo
Conceptualization
;
Peressotti A.
Ultimo
Conceptualization
2022-01-01

Abstract

In natural environments, plants are exposed to variable light conditions, but photosynthesis has been mainly studied at steady state and this might overestimate carbon (C) uptake at the canopy scale. To better elucidate the role of light fluctuations on canopy photosynthesis, we investigated how the chlorophyll content, and therefore the different absorbance of light, would affect the quantum yield in fluctuating light conditions. For this purpose, we grew a commercial variety (Eiko) and a chlorophyll deficient mutant (MinnGold) either in fluctuating (F) or non-fluctuating (NF) light conditions with sinusoidal changes in irradiance. Two different light treatments were also applied: a low light treatment (LL; max 650 μmol m−2 s−1) and a high light treatment (HL; max 1,000 μmol m−2 s−1). Canopy gas exchanges were continuously measured throughout the experiment. We found no differences in C uptake in LL treatment, either under F or NF. Light fluctuations were instead detrimental for the chlorophyll deficient mutant in HL conditions only, while the green variety seemed to be well-adapted to them. Varieties adapted to fluctuating light might be identified to target the molecular mechanisms responsible for such adaptations.
File in questo prodotto:
File Dimensione Formato  
Salvatori_et_al_2022b.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 998.05 kB
Formato Adobe PDF
998.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1226437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact