In this paper, we consider the uniqueness issue for the inverse problem of load identification in a nanoplate by dynamic measurements. Working in the framework of the strain gradient linear elasticity theory, we first deduce a Kirchhoff-Love nanoplate model, and we analyze the well-posedness of the equilibrium problem, clarifying the correct Neumann conditions on curved portions of the boundary. Our uniqueness result states that, given a transverse dynamic load (Formula presented.), where (Formula presented.) and (Formula presented.) are known time-dependent functions, if the transverse displacement of the nanoplate is known in an open subset of its domain for any interval of time, then the spatial components (Formula presented.) can be determined uniquely from the data. The proof is based on the spherical means method. The uniqueness result suggests a reconstruction technique to approximate the loads, as confirmed by a series of numerical simulations performed on a rectangular clamped nanoplate.
Inverse load identification in vibrating nanoplates
Morassi A.;
2022-01-01
Abstract
In this paper, we consider the uniqueness issue for the inverse problem of load identification in a nanoplate by dynamic measurements. Working in the framework of the strain gradient linear elasticity theory, we first deduce a Kirchhoff-Love nanoplate model, and we analyze the well-posedness of the equilibrium problem, clarifying the correct Neumann conditions on curved portions of the boundary. Our uniqueness result states that, given a transverse dynamic load (Formula presented.), where (Formula presented.) and (Formula presented.) are known time-dependent functions, if the transverse displacement of the nanoplate is known in an open subset of its domain for any interval of time, then the spatial components (Formula presented.) can be determined uniquely from the data. The proof is based on the spherical means method. The uniqueness result suggests a reconstruction technique to approximate the loads, as confirmed by a series of numerical simulations performed on a rectangular clamped nanoplate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.