A convenient assembly recently proposed for screen printed gold electrodes (SPEs) suitable for measurements in gaseous samples is here tested for the analysis of the ethanol content in alcoholic drinks. This assembly involves the use of a circular crown of filter paper, soaked in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hydrogen sulfate, which is simply placed upon a disposable screen printed cell, so as to contact the outer edge of the gold disc working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL and the SPE electrode is assured by a gasket and all components are installed in a polylactic acid holder. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of a RTIL characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was assayed for the flow injection analysis of the ethanol concentration in some real samples of wine and beer and the results obtained are compared with the alcoholic degree reported in the relevant bottle-labels, thus highlighting a substantially satisfactory agreement. Repeatable sharp peaks (RSD=6–8 %) were detected for ethanol over a wide linear range (1–20 % v/v in water) and a detection and quantitation limit of 0.55 % v/v and 1.60 % v/v were inferred for a signal-to-noise ratio of 3 and 10, respectively.

Amperometric Detection of Ethanol Vapors by Screen Printed Electrodes Modified by Paper Crowns Soaked with Room Temperature Ionic Liquids

Andrea Fattori;Rossella Svigelj;Cristian Grazioli;Rosanna Toniolo
2022

Abstract

A convenient assembly recently proposed for screen printed gold electrodes (SPEs) suitable for measurements in gaseous samples is here tested for the analysis of the ethanol content in alcoholic drinks. This assembly involves the use of a circular crown of filter paper, soaked in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hydrogen sulfate, which is simply placed upon a disposable screen printed cell, so as to contact the outer edge of the gold disc working electrode, as well as peripheral counter and reference electrodes. The electrical contact between the paper crown soaked in RTIL and the SPE electrode is assured by a gasket and all components are installed in a polylactic acid holder. This assembly provides a portable and disposable electrochemical platform, assembled by the easy immobilization onto a porous and inexpensive supporting material such as paper of a RTIL characterized by profitable electrical conductivity and negligible vapor pressure. The electroanalytical performance of this device was assayed for the flow injection analysis of the ethanol concentration in some real samples of wine and beer and the results obtained are compared with the alcoholic degree reported in the relevant bottle-labels, thus highlighting a substantially satisfactory agreement. Repeatable sharp peaks (RSD=6–8 %) were detected for ethanol over a wide linear range (1–20 % v/v in water) and a detection and quantitation limit of 0.55 % v/v and 1.60 % v/v were inferred for a signal-to-noise ratio of 3 and 10, respectively.
File in questo prodotto:
File Dimensione Formato  
Amperometric Detection.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11390/1230010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact