This paper presents studies of Bose–Einstein correlations (BEC) in proton–proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 μ b- 1 and 8.4 nb- 1, respectively. The BEC are measured for pairs of like-sign charged particles, each with | η| < 2.5 , for two kinematic ranges: the first with particle pT> 100 MeV and the second with particle pT> 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.

Two-particle Bose–Einstein correlations in pp collisions at √s=13 TeV measured with the ATLAS detector at the LHC

M. Cobal;M. P. Giordani;G. Giugliarelli;G. Panizzo;
2022-01-01

Abstract

This paper presents studies of Bose–Einstein correlations (BEC) in proton–proton collisions at a centre-of-mass energy of 13 TeV, using data from the ATLAS detector at the CERN Large Hadron Collider. Data were collected in a special low-luminosity configuration with a minimum-bias trigger and a high-multiplicity track trigger, accumulating integrated luminosities of 151 μ b- 1 and 8.4 nb- 1, respectively. The BEC are measured for pairs of like-sign charged particles, each with | η| < 2.5 , for two kinematic ranges: the first with particle pT> 100 MeV and the second with particle pT> 500 MeV. The BEC parameters, characterizing the source radius and particle correlation strength, are investigated as functions of charged-particle multiplicity (up to 300) and average transverse momentum of the pair (up to 1.5 GeV). The double-differential dependence on charged-particle multiplicity and average transverse momentum of the pair is also studied. The BEC radius is found to be independent of the charged-particle multiplicity for high charged-particle multiplicity (above 100), confirming a previous observation at lower energy. This saturation occurs independent of the transverse momentum of the pair.
File in questo prodotto:
File Dimensione Formato  
s10052-022-10472-0_compressed.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1231613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact