We prove logarithmic conditional stability up to the final time for backward-parabolic operators whose coefficients are Log-Lipschitz continuous in t and Lipschitz continuous in x. The result complements previous achievements of Del Santo and Prizzi (2009) and Del Santo, Jäh and Prizzi (2015), concerning conditional stability (of a type intermediate between Hölder and logarithmic), arbitrarily closed, but not up to the final time.

Conditional stability up to the final time for backward-parabolic equations with Log-Lipschitz coefficients

D. Casagrande;
2022-01-01

Abstract

We prove logarithmic conditional stability up to the final time for backward-parabolic operators whose coefficients are Log-Lipschitz continuous in t and Lipschitz continuous in x. The result complements previous achievements of Del Santo and Prizzi (2009) and Del Santo, Jäh and Prizzi (2015), concerning conditional stability (of a type intermediate between Hölder and logarithmic), arbitrarily closed, but not up to the final time.
File in questo prodotto:
File Dimensione Formato  
Cas_Del_Pri_JDE_2022.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non pubblico
Dimensione 406.56 kB
Formato Adobe PDF
406.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1232259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact