ABSTRACT In the southern Aosta Valley (Italian Northwestern Alps), meta-ophiolites are mainly composed of serpentinized mantle-derived peridotites intruded by gabbros and rodingitic dykes, well exposed in the Mount Avic area, and of smaller amounts of mafic rocks and metatrondhjemite. This rock assemblage recalls the "slow-spreading" lithosphere created at modern mid-ocean ridges. Meta-ophiolites show a dominant early Alpine subduction-related metamorphic imprint under eclogite/blueschist facies conditions, variously retogressed under greenschists facies conditions. In the high Champorcher Valley (SW of Mount Avic) serpentinites are directly covered by a serpentinite mélange followed by flysch-like calcschists with detrital ophiolitic interbeds. Despite the pervasive Alpine tectonic deformation and metamorphic recrystallization through subduction-related stretching and boudinage and collision-related folding, the mélange internal fabric still retains records of a block-in-matrix structure, well consistent with mass-transport processes related to an active oceanic tectonic setting in which mantle rocks were progressively and continuously exhumed by faulting. The products of mass-transport processes and faulting are unconformably sealed by flysch-type calcschists embedding cm-sized clasts of actinolite/tremolite-schists interpreted as detrital ophiolitic material. The serpentinite mélange is interpreted as syn-extensional sedimentary rocks produced at the mantle-sediments interface on the Jurassic Tethys ocean floor and subsequently overprinted by subduction zone tectonics.

Fossil mantle-sediments interface recognized in the Western Alps metaophiolites : a key to unravel the accretion mechanism of the Jurassic Tethys ocean

Benciolini L.;
2015-01-01

Abstract

ABSTRACT In the southern Aosta Valley (Italian Northwestern Alps), meta-ophiolites are mainly composed of serpentinized mantle-derived peridotites intruded by gabbros and rodingitic dykes, well exposed in the Mount Avic area, and of smaller amounts of mafic rocks and metatrondhjemite. This rock assemblage recalls the "slow-spreading" lithosphere created at modern mid-ocean ridges. Meta-ophiolites show a dominant early Alpine subduction-related metamorphic imprint under eclogite/blueschist facies conditions, variously retogressed under greenschists facies conditions. In the high Champorcher Valley (SW of Mount Avic) serpentinites are directly covered by a serpentinite mélange followed by flysch-like calcschists with detrital ophiolitic interbeds. Despite the pervasive Alpine tectonic deformation and metamorphic recrystallization through subduction-related stretching and boudinage and collision-related folding, the mélange internal fabric still retains records of a block-in-matrix structure, well consistent with mass-transport processes related to an active oceanic tectonic setting in which mantle rocks were progressively and continuously exhumed by faulting. The products of mass-transport processes and faulting are unconformably sealed by flysch-type calcschists embedding cm-sized clasts of actinolite/tremolite-schists interpreted as detrital ophiolitic material. The serpentinite mélange is interpreted as syn-extensional sedimentary rocks produced at the mantle-sediments interface on the Jurassic Tethys ocean floor and subsequently overprinted by subduction zone tectonics.
File in questo prodotto:
File Dimensione Formato  
Fossil mantle sediments interface WAlps.pdf

non disponibili

Licenza: Non pubblico
Dimensione 221.61 kB
Formato Adobe PDF
221.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1232324
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact