With the increased use of renewable energy sources, the need to store large amounts of energy will become increasingly important in the near future. A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage. Owing to the high reaction enthalpy, the moderate pressure and appropriate temperature conditions, the broad abundance and the recyclability, the Mg/Al alloy is perfectly suitable for this purpose. As further development of a previous work, in which the performance of recycled Mg/Al waste was presented, a kinetic model for hydro- and dehydrogenation is derived in this study. Temperature and pressure dependencies are determined, as well as the rate limiting step of the reaction. First experiments are carried out in an autoclave with a scaled-up powder mass, which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.

Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage

Capurso G.;
2022-01-01

Abstract

With the increased use of renewable energy sources, the need to store large amounts of energy will become increasingly important in the near future. A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage. Owing to the high reaction enthalpy, the moderate pressure and appropriate temperature conditions, the broad abundance and the recyclability, the Mg/Al alloy is perfectly suitable for this purpose. As further development of a previous work, in which the performance of recycled Mg/Al waste was presented, a kinetic model for hydro- and dehydrogenation is derived in this study. Temperature and pressure dependencies are determined, as well as the rate limiting step of the reaction. First experiments are carried out in an autoclave with a scaled-up powder mass, which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S221395672200007X-main.pdf

accesso aperto

Descrizione: Article in press
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.91 MB
Formato Adobe PDF
2.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1233544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact