Cow’s milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and β-lactoglobulin (β-LG). At regulatory level, β-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of β-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of β-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of β-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 μg L−1, respectively. Graphical abstract: [Figure not available: see fulltext.]
A portable electrochemiluminescence aptasensor for β-lactoglobulin detection
Svigelj R.;Dossi N.;Toniolo R.
2022-01-01
Abstract
Cow’s milk allergy is one of the most common food allergies in children with a prevalence of around 2.5%. Milk contains several allergens; the main ones are caseins and β-lactoglobulin (β-LG). At regulatory level, β-LG is not explicitly named, but milk is included in the list of substances or products causing allergies or intolerances. Hence, the presence of β-LG can be a useful marker for determining the presence of milk in food. In this work, we present an aptasensor based on electrochemiluminescence (ECL) for the quantification of β-LG in real food matrices displaying integrated advantages consisting of high specificity, good sensitivity, portability, and cost effectiveness. The performance and applicability of this sensor were tested by analyzing a sample of skimmed milk and an oat-based drink proposed as a vegetable substitute for milk of animal origin. We obtained a linear correlation between the intensity of the signal and the concentration of β-LG standard solutions (y = x * 0.00653 + 1.038, R2 = 0.99). The limit of detection (LOD) and the limit of quantification (LOQ) were found to be 1.36 and 4.55 μg L−1, respectively. Graphical abstract: [Figure not available: see fulltext.]File | Dimensione | Formato | |
---|---|---|---|
s00216-022-04328-5.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
683.39 kB
Formato
Adobe PDF
|
683.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.