In this study, a new rig for investigating the static and dynamic stability of agricultural machines was conceived: its architecture was studied and its layout was designed following a specific conceptual approach. The first part of the proposed design process specifically addresses the test equipment and follows a ‘top-down’ logic starting from the requisites of the tests to perform. This approach alternates analysis and synthesis phases and exploits two important principles of the creative design process: functional analysis and decomposition, and kinematic inversion. During this process, many solutions (kinematic mechanisms, actuators) were proposed and discussed based on their advantages and disadvantages towards the definition of an optimal configuration. Therefore, the layout of a new mechanical system has been developed, which is supposed to steer subsequent and more detailed design-phases appropriately. The proposed facility has many innovative features compared to traditional test systems, in which vehicles are tested for lateral overturning under static conditions with the steering components (wheels/central joint for conventional/articulated vehicles) usually in a configuration corresponding only to a straight-path trajectory. Indeed, the present test rig is a mechanical installation with three degrees of freedom. It presents a wide plane, which can be tilted, composed by two semi-platforms connected by a central articulation hinge, operated by hydraulic jacks which allow the different angulations of the semi-platforms. It is specifically thought for performing dynamic stability tests of vehicles, especially on circular trajectories. An additional subsystem embedded in one of the two semi-platforms, configured as a rotating platform (‘turntable’), can test the global (static) stability of motionless vehicles placed on it.

Definition of the Layout for a New Facility to Test the Static and Dynamic Stability of Agricultural Vehicles Operating on Sloping Grounds

Bietresato M;
2019-01-01

Abstract

In this study, a new rig for investigating the static and dynamic stability of agricultural machines was conceived: its architecture was studied and its layout was designed following a specific conceptual approach. The first part of the proposed design process specifically addresses the test equipment and follows a ‘top-down’ logic starting from the requisites of the tests to perform. This approach alternates analysis and synthesis phases and exploits two important principles of the creative design process: functional analysis and decomposition, and kinematic inversion. During this process, many solutions (kinematic mechanisms, actuators) were proposed and discussed based on their advantages and disadvantages towards the definition of an optimal configuration. Therefore, the layout of a new mechanical system has been developed, which is supposed to steer subsequent and more detailed design-phases appropriately. The proposed facility has many innovative features compared to traditional test systems, in which vehicles are tested for lateral overturning under static conditions with the steering components (wheels/central joint for conventional/articulated vehicles) usually in a configuration corresponding only to a straight-path trajectory. Indeed, the present test rig is a mechanical installation with three degrees of freedom. It presents a wide plane, which can be tilted, composed by two semi-platforms connected by a central articulation hinge, operated by hydraulic jacks which allow the different angulations of the semi-platforms. It is specifically thought for performing dynamic stability tests of vehicles, especially on circular trajectories. An additional subsystem embedded in one of the two semi-platforms, configured as a rotating platform (‘turntable’), can test the global (static) stability of motionless vehicles placed on it.
File in questo prodotto:
File Dimensione Formato  
Rivista - 2019 - paper - applsci-09-04135.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.51 MB
Formato Adobe PDF
9.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1235483
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact