The effect of post-processing heat treatment on the corrosion behavior of AISI 316L stainless steel manufactured by laser powder bed fusion (L-PBF) is investigated in this work. Produced stainless steel was heat treated in a broad temperature range (from 200 °C to 1100 °C) in order to evaluate the electrochemical behavior and morphology of corrosion. The electrochemical behavior was investigated by potentiodynamic and galvanostatic polarization in a neutral and acidic (pH 1.8) 3.5% NaCl solution. The microstructure modification after heat treatment and the morphology of attack of corroded samples were evaluated by optical and scanning electron microscopy. The fine cellular/columnar microstructure typically observed for additive-manufactured stainless steel evolves into a fine equiaxed austenitic structure after thermal treatment at high temperatures (above 800 °C). The post-processing thermal treatment does not negatively affect the electrochemical behavior of additive-manufactured stainless steel even after prolonged heat treatment at 1100 °C for 8 h and 24 h. This indicates that the excellent barrier properties of the native oxide film are retained after heat treatment.

Effect of Thermal Treatment on Corrosion Behavior of AISI 316L Stainless Steel Manufactured by Laser Powder Bed Fusion

Andreatta F.;Lanzutti A.;Vaglio E.;Totis G.;Sortino M.;Fedrizzi L.;
2022-01-01

Abstract

The effect of post-processing heat treatment on the corrosion behavior of AISI 316L stainless steel manufactured by laser powder bed fusion (L-PBF) is investigated in this work. Produced stainless steel was heat treated in a broad temperature range (from 200 °C to 1100 °C) in order to evaluate the electrochemical behavior and morphology of corrosion. The electrochemical behavior was investigated by potentiodynamic and galvanostatic polarization in a neutral and acidic (pH 1.8) 3.5% NaCl solution. The microstructure modification after heat treatment and the morphology of attack of corroded samples were evaluated by optical and scanning electron microscopy. The fine cellular/columnar microstructure typically observed for additive-manufactured stainless steel evolves into a fine equiaxed austenitic structure after thermal treatment at high temperatures (above 800 °C). The post-processing thermal treatment does not negatively affect the electrochemical behavior of additive-manufactured stainless steel even after prolonged heat treatment at 1100 °C for 8 h and 24 h. This indicates that the excellent barrier properties of the native oxide film are retained after heat treatment.
File in questo prodotto:
File Dimensione Formato  
materials-15-06768-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 7.06 MB
Formato Adobe PDF
7.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1235787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact