Osteosarcoma cell viability, proliferation, and differentiation into osteoblasts on a silicon nitride bioceramic were examined as a function of chemical modifications of its as-fired surface. Biological and spectroscopic analyses showed that (i) postsintering annealing in N-2 gas significantly improved apatite formation from human osteosarcoma (SaOS-2) cells; (ii) in situ Raman spectroscopic monitoring revealed new metabolic details of the SaOS-2 cells, including fine differences in intracellular RNA and membrane phospholipids; and (iii) the enhanced apatite formation originated from a high density of positively charged surface groups, including both nitrogen vacancies (V-N(3+)) and nitrogen N-N bonds (N-4(+)) formed during annealing in N-2 gas. At homeostatic pH, these positive surface charges promoted binding of proteins onto an otherwise negatively charged surface of deprotonated silanols (SiO-). A dipole-like electric-charge, which includes V-N(3+)/N-4(+) and SiO- defective sites, is proposed as a mechanism to explain the attractive forces between transmembrane proteins and the COO- and NH2+ respectively. This is analogous to the mechanism occurring in mineral hydroxyapatite where protein groups are specifically displaced by the presence of positively charged calcium loci (Ca+) and off-stoichiometry phosphorus sites (PO42-).

In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces

Rondinella, Alfredo;
2016-01-01

Abstract

Osteosarcoma cell viability, proliferation, and differentiation into osteoblasts on a silicon nitride bioceramic were examined as a function of chemical modifications of its as-fired surface. Biological and spectroscopic analyses showed that (i) postsintering annealing in N-2 gas significantly improved apatite formation from human osteosarcoma (SaOS-2) cells; (ii) in situ Raman spectroscopic monitoring revealed new metabolic details of the SaOS-2 cells, including fine differences in intracellular RNA and membrane phospholipids; and (iii) the enhanced apatite formation originated from a high density of positively charged surface groups, including both nitrogen vacancies (V-N(3+)) and nitrogen N-N bonds (N-4(+)) formed during annealing in N-2 gas. At homeostatic pH, these positive surface charges promoted binding of proteins onto an otherwise negatively charged surface of deprotonated silanols (SiO-). A dipole-like electric-charge, which includes V-N(3+)/N-4(+) and SiO- defective sites, is proposed as a mechanism to explain the attractive forces between transmembrane proteins and the COO- and NH2+ respectively. This is analogous to the mechanism occurring in mineral hydroxyapatite where protein groups are specifically displaced by the presence of positively charged calcium loci (Ca+) and off-stoichiometry phosphorus sites (PO42-).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1235869
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 32
social impact