The widespread use of the Internet and the constant increase in users of social media platforms has made a large amount of textual data available. This represents a valuable source of information about the changes in people's opinions and feelings. This paper presents the application of Emotional Text Mining (ETM) in the field of brand management. ETM is an unsupervised procedure aiming to profile social media users. It is based on a bottom-up approach to classify unstructured data for the identification of social media users’ representations and sentiments about a topic. It is a fast and simple procedure to extract meaningful information from a large collection of texts. As customer profiling is relevant for brand management, we illustrate a business application of ETM on Twitter messages concerning a well-known sportswear brand in order to show the potential of this procedure, highlighting the characteristics of Twitter user communities in terms of product preferences, representations, and sentiments.
Emotional Text Mining: Customer profiling in brand management
Greco F.;
2020-01-01
Abstract
The widespread use of the Internet and the constant increase in users of social media platforms has made a large amount of textual data available. This represents a valuable source of information about the changes in people's opinions and feelings. This paper presents the application of Emotional Text Mining (ETM) in the field of brand management. ETM is an unsupervised procedure aiming to profile social media users. It is based on a bottom-up approach to classify unstructured data for the identification of social media users’ representations and sentiments about a topic. It is a fast and simple procedure to extract meaningful information from a large collection of texts. As customer profiling is relevant for brand management, we illustrate a business application of ETM on Twitter messages concerning a well-known sportswear brand in order to show the potential of this procedure, highlighting the characteristics of Twitter user communities in terms of product preferences, representations, and sentiments.File | Dimensione | Formato | |
---|---|---|---|
IJIM_2020.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.