Insulators installed outdoors are vulnerable to the accumulation of contaminants on their surface, which raise their conductivity and increase leakage current until a flashover occurs. To improve the reliability of the electrical power system, it is possible to evaluate the development of the fault in relation to the increase in leakage current and thus predict a shutdown might occur. This paper proposes the use of empirical wavelet transform (EWT) to reduce the influence of non-representative variations and combines the attention mechanism with long short-term memory (LSTM) recurrent network for prediction. The Optuna framework has been applied for hyperparameter optimization, resulting in a method called Optimized EWT-Seq2Seq-LSTM with Attention. The proposed model had a 10.17% lower mean square error (MSE) than the standard LSTM and a 5.36% lower MSE than the model without optimization, showing that the attention mechanism and hyperparameter optimization is a promising strategy.

Optimized EWT-Seq2Seq-LSTM with Attention Mechanism to Insulators Fault Prediction

Stefenon, Stefano Frizzo
Software
;
2023-01-01

Abstract

Insulators installed outdoors are vulnerable to the accumulation of contaminants on their surface, which raise their conductivity and increase leakage current until a flashover occurs. To improve the reliability of the electrical power system, it is possible to evaluate the development of the fault in relation to the increase in leakage current and thus predict a shutdown might occur. This paper proposes the use of empirical wavelet transform (EWT) to reduce the influence of non-representative variations and combines the attention mechanism with long short-term memory (LSTM) recurrent network for prediction. The Optuna framework has been applied for hyperparameter optimization, resulting in a method called Optimized EWT-Seq2Seq-LSTM with Attention. The proposed model had a 10.17% lower mean square error (MSE) than the standard LSTM and a 5.36% lower MSE than the model without optimization, showing that the attention mechanism and hyperparameter optimization is a promising strategy.
File in questo prodotto:
File Dimensione Formato  
sensors-23-03202.pdf

accesso aperto

Descrizione: paper
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1243144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact