We prove the existence of infinitely many non-radial positive solutions for the Schrödinger-Newton system [equaction presented] provided that V (r) has the following behavior at infinity: [equaction presented] where 1/2 ≤ m < 1 and a,V0, are some positive constants. In particular, for any s large we use a reduction method to construct s-bump solutions lying on a circle of radius [equaction presented].

Infinitely many solutions for Schrödinger-Newton equations

Jevnikar A.;
2023-01-01

Abstract

We prove the existence of infinitely many non-radial positive solutions for the Schrödinger-Newton system [equaction presented] provided that V (r) has the following behavior at infinity: [equaction presented] where 1/2 ≤ m < 1 and a,V0, are some positive constants. In particular, for any s large we use a reduction method to construct s-bump solutions lying on a circle of radius [equaction presented].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1244790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact