The optimization of the supported Pd phase for CH4 activation on Pd/CeO2 catalysts has been a matter of great interest in the recent literature, aiming at the design of efficient methane abatement catalysts for Natural Gas fueled Vehicles (NGVs). Under lean conditions, a mixed Pd0 /PdO combination has been indicated as exhibiting the best performance, while controversial results have been reported under stoichiometric conditions depending on the support oxide, where either Al2O3 or zeolite-based supports are usually considered. Here, by means of synchrotron-based in situ NAP-XPS and XRD measurements, we follow the evolution of Pd species on Pd/CeO2 samples prepared by dry mechanochemical synthesis (M) under stoichiometric CH4 oxidation feed, unravelling a stable Pd0 /Pd2+ arrangement in a close to 1 : 1 ratio as the most active palladium state for CH4 activation when excess oxygen is not available, in contrast to what was reported for Pd/alumina materials, where metallic Pd0 nanoparticles showed the highest activity. The combination of NAP-XPS analysis and activity test results highlights the promotional effect of the Pd–Ce interaction, resulting in enhanced oxygen transfer and improved activity and stability of the Pd/CeO2 catalyst prepared by a novel mechanochemical approach even under low O2 content, large excess of water vapor (10 vol%) and high temperature exposure (4700 1C).
In situ investigation of the mechanochemically promoted Pd–Ce interaction under stoichiometric methane oxidation conditions
Danielis, Maila;Colussi, Sara;Trovarelli, Alessandro
2023-01-01
Abstract
The optimization of the supported Pd phase for CH4 activation on Pd/CeO2 catalysts has been a matter of great interest in the recent literature, aiming at the design of efficient methane abatement catalysts for Natural Gas fueled Vehicles (NGVs). Under lean conditions, a mixed Pd0 /PdO combination has been indicated as exhibiting the best performance, while controversial results have been reported under stoichiometric conditions depending on the support oxide, where either Al2O3 or zeolite-based supports are usually considered. Here, by means of synchrotron-based in situ NAP-XPS and XRD measurements, we follow the evolution of Pd species on Pd/CeO2 samples prepared by dry mechanochemical synthesis (M) under stoichiometric CH4 oxidation feed, unravelling a stable Pd0 /Pd2+ arrangement in a close to 1 : 1 ratio as the most active palladium state for CH4 activation when excess oxygen is not available, in contrast to what was reported for Pd/alumina materials, where metallic Pd0 nanoparticles showed the highest activity. The combination of NAP-XPS analysis and activity test results highlights the promotional effect of the Pd–Ce interaction, resulting in enhanced oxygen transfer and improved activity and stability of the Pd/CeO2 catalyst prepared by a novel mechanochemical approach even under low O2 content, large excess of water vapor (10 vol%) and high temperature exposure (4700 1C).File | Dimensione | Formato | |
---|---|---|---|
d2ey00067a.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.