We deal with a planar differential system of the form u′=h(t,v), v′=−λa(t)g(u), where h is T-periodic in the first variable and strictly increasing in the second variable, λ>0, a is a sign-changing T-periodic weight function and g is superlinear. Based on the coincidence degree theory, in dependence of λ, we prove the existence of T-periodic solutions (u,v) such that u(t)>0 for all t∈R. Our results generalize and unify previous contributions about Butler's problem on positive periodic solutions for second-order differential equations (involving linear or ϕ-Laplacian-type differential operators).

Periodic solutions to superlinear indefinite planar systems: A topological degree approach

Feltrin, Guglielmo
;
Zanolin, Fabio
2023-01-01

Abstract

We deal with a planar differential system of the form u′=h(t,v), v′=−λa(t)g(u), where h is T-periodic in the first variable and strictly increasing in the second variable, λ>0, a is a sign-changing T-periodic weight function and g is superlinear. Based on the coincidence degree theory, in dependence of λ, we prove the existence of T-periodic solutions (u,v) such that u(t)>0 for all t∈R. Our results generalize and unify previous contributions about Butler's problem on positive periodic solutions for second-order differential equations (involving linear or ϕ-Laplacian-type differential operators).
File in questo prodotto:
File Dimensione Formato  
Feltrin_Sampedro_Zanolin_JDE_2023.pdf

accesso aperto

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 510.34 kB
Formato Adobe PDF
510.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1246567
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact