Let X be a smooth quartic surface not containing lines, defined over a number field κ. We prove that there are only finitely many bitangents to X which are defined over κ. This result can be interpreted as saying that a certain surface, having vanishing irregularity, contains only finitely many rational points. In our proof, we use the geometry of lines of the quartic double solid associated to X. In a somewhat opposite direction, we show that on any quartic surface X over a number field κ, the set of algebraic points in X(κ) which are quadratic over a suitable finite extension κ' of κ is Zariski-dense.

Quartic surfaces, their bitangents and rational points

Corvaja P.;Zucconi F.
2023-01-01

Abstract

Let X be a smooth quartic surface not containing lines, defined over a number field κ. We prove that there are only finitely many bitangents to X which are defined over κ. This result can be interpreted as saying that a certain surface, having vanishing irregularity, contains only finitely many rational points. In our proof, we use the geometry of lines of the quartic double solid associated to X. In a somewhat opposite direction, we show that on any quartic surface X over a number field κ, the set of algebraic points in X(κ) which are quadratic over a suitable finite extension κ' of κ is Zariski-dense.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1251151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact