This study investigates the structural evolution and redox characteristics of the double perovskite Sr2FeMo0.6Ni0.4O6-δ (SFMN) during hydrogen (H2) and carbon dioxide (CO2) redox cycles and explores the material performance in the Reverse Water-Gas Shift Chemical Looping (RWGS-CL) reaction. In-situ and ex-situ X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) studies reveal that H2 reduction at temperatures above 800 °C leads to the exsolution of bimetallic Ni-Fe alloy particles and the formation of a Ruddlesden-Popper (RP) phase. A core–shell structure with Ni-Fe core and a perovskite oxide shell is formed with subsequent redox cycles, and the resulting material exhibits better performance and high stability in the RWGS-CL process. Thermogravimetric (TGA) and Temperature Programmed Reduction (TPR) and Oxidation (TPO) analyses show that the optimal reduction and oxidation temperatures for maximizing the CO yield are around 850 °C and 750 °C respectively, and that the cycled material is able to work steadily under isothermal conditions at 850 °C.

Exsolution-enhanced reverse water-gas shift chemical looping activity of Sr2FeMo0.6Ni0.4O6-δ double perovskite

Felli A.;Boaro M.
;
de Leitenburg C.;Trovarelli A.;
2023-01-01

Abstract

This study investigates the structural evolution and redox characteristics of the double perovskite Sr2FeMo0.6Ni0.4O6-δ (SFMN) during hydrogen (H2) and carbon dioxide (CO2) redox cycles and explores the material performance in the Reverse Water-Gas Shift Chemical Looping (RWGS-CL) reaction. In-situ and ex-situ X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) studies reveal that H2 reduction at temperatures above 800 °C leads to the exsolution of bimetallic Ni-Fe alloy particles and the formation of a Ruddlesden-Popper (RP) phase. A core–shell structure with Ni-Fe core and a perovskite oxide shell is formed with subsequent redox cycles, and the resulting material exhibits better performance and high stability in the RWGS-CL process. Thermogravimetric (TGA) and Temperature Programmed Reduction (TPR) and Oxidation (TPO) analyses show that the optimal reduction and oxidation temperatures for maximizing the CO yield are around 850 °C and 750 °C respectively, and that the cycled material is able to work steadily under isothermal conditions at 850 °C.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1385894723048143-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.96 MB
Formato Adobe PDF
5.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1264385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact