This paper reviews the most common situations in which the regularity conditions that underlie classical likelihood-based parametric inference fail, focusing on the large-sample properties of the likelihood ratio statistic. We identify three main classes of problems: boundary problems, indeterminate parameter problems—which include nonidentifiable parameters and singular information matrices—and change-point problems. We emphasise analytical solutions, consider software implementations where available, and summarise how the key results are derived.
Likelihood Asymptotics in Nonregular Settings: A Review with Emphasis on the Likelihood Ratio
Mameli Valentina
2024-01-01
Abstract
This paper reviews the most common situations in which the regularity conditions that underlie classical likelihood-based parametric inference fail, focusing on the large-sample properties of the likelihood ratio statistic. We identify three main classes of problems: boundary problems, indeterminate parameter problems—which include nonidentifiable parameters and singular information matrices—and change-point problems. We emphasise analytical solutions, consider software implementations where available, and summarise how the key results are derived.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
postprint.pdf
non disponibili
Descrizione: Postprint
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
927.28 kB
Formato
Adobe PDF
|
927.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


