We prove comparison principles, uniqueness, regularity and symmetry results for p-regular distributional solutions of quasilinear very weak elliptic equations of coercive type and to related inequalities. The simplest model examples are -Δ_pu+|u|^(q-1)u=h on R^N, where q>p-1>0 and -div( abla u/sqrt(1+| abla u|^2)+|u|^(q-1)u=h on ℝN, with q>0 and h∈L^1_loc(R^N).

Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities

D'AMBROSIO, Lorenzo;
2013-01-01

Abstract

We prove comparison principles, uniqueness, regularity and symmetry results for p-regular distributional solutions of quasilinear very weak elliptic equations of coercive type and to related inequalities. The simplest model examples are -Δ_pu+|u|^(q-1)u=h on R^N, where q>p-1>0 and -div( abla u/sqrt(1+| abla u|^2)+|u|^(q-1)u=h on ℝN, with q>0 and h∈L^1_loc(R^N).
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X13001880-main-1.pdf

non disponibili

Licenza: Non pubblico
Dimensione 530.49 kB
Formato Adobe PDF
530.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact