We prove a simple sufficient criteria to obtain some Hardy inequalities on Rie- mannian manifolds related to quasilinear second-order differential operator ∆p u := div | u|p−2 u . Namely, if ρ is a nonnegative weight such that −∆p ρ ≥ 0, then the Hardy inequality c M |u|p | ρ|p dvg ≤ ρp | u|p dvg , ∞ u ∈ C0 (M ). M holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo- Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.

Hardy inequalities on Riemannian manifolds and applications

D'AMBROSIO, Lorenzo;
2014-01-01

Abstract

We prove a simple sufficient criteria to obtain some Hardy inequalities on Rie- mannian manifolds related to quasilinear second-order differential operator ∆p u := div | u|p−2 u . Namely, if ρ is a nonnegative weight such that −∆p ρ ≥ 0, then the Hardy inequality c M |u|p | ρ|p dvg ≤ ρp | u|p dvg , ∞ u ∈ C0 (M ). M holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo- Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality.
File in questo prodotto:
File Dimensione Formato  
2014DD-HardyRiemannianManifolds.pdf

non disponibili

Licenza: Non pubblico
Dimensione 435.75 kB
Formato Adobe PDF
435.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 64
social impact