Variants of Kato’s inequality are proved for general quasilinear elliptic operators L. As an outcome we show that, dealing with Liouville theorems for coercive equations of the type Lu = f (x, u,Du) on Ω ⊂ R^N , where f is such that f(x, t, ξ) t ≥ 0, the assumption that the possible solutions are nonnegative involves no loss of generality. Related consequences such as comparison principles and a priori bounds on solutions are also presented. An underlying structure throughout this work is the framework of Carnot groups.

A priori estimates and reduction principles for quasilinear elliptic problems and applications

D'AMBROSIO, Lorenzo;
2012-01-01

Abstract

Variants of Kato’s inequality are proved for general quasilinear elliptic operators L. As an outcome we show that, dealing with Liouville theorems for coercive equations of the type Lu = f (x, u,Du) on Ω ⊂ R^N , where f is such that f(x, t, ξ) t ≥ 0, the assumption that the possible solutions are nonnegative involves no loss of generality. Related consequences such as comparison principles and a priori bounds on solutions are also presented. An underlying structure throughout this work is the framework of Carnot groups.
File in questo prodotto:
File Dimensione Formato  
dambrosio-AdvDE-AprioriReduction.pdf

non disponibili

Licenza: Non pubblico
Dimensione 591.05 kB
Formato Adobe PDF
591.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 30
social impact