We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L p u := −∇ L (|∇ L u| p−2 ∇ L u). If φ is a positive weight such that −L p φ ≥ 0, then the Hardy-type inequality c |u| p |∇ φ| p dξ ≤ L φp |∇ u| p dξ L 1 u ∈ C 0( ) holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.

Hardy Type Inequalities Related to Degenerate Elliptic Differential Operators

D'AMBROSIO, Lorenzo
2005-01-01

Abstract

We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differential operators L p u := −∇ L (|∇ L u| p−2 ∇ L u). If φ is a positive weight such that −L p φ ≥ 0, then the Hardy-type inequality c |u| p |∇ φ| p dξ ≤ L φp |∇ u| p dξ L 1 u ∈ C 0( ) holds. We find an explicit value of the constant involved, which, in most cases, results optimal. As particular case we derive Hardy inequalities for subelliptic operators on Carnot Groups.
File in questo prodotto:
File Dimensione Formato  
DAmbrosio-HardyDegenerateEllipticOperator.pdf

non disponibili

Licenza: Non pubblico
Dimensione 243.08 kB
Formato Adobe PDF
243.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1267662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 93
social impact