Dropwise condensation (DWC) of steam over hybrid hydrophobic–hydrophilic surfaces is numerically investigated via a phenomenological, Lagrangian model. The full non-dimensionalization of the heat transfer model, needed to determine the droplet growth, allows for generalization of computational results. Hybrid surfaces characterized by recursive geometries are implemented via the introduction of proper boundary conditions. The numerical size distribution of both the large and the small droplet populations, crucial for development of simplified, statistically sound models, is compared with empirical and theoretical correlations. Then, the validation with experimental data involving DWC over an hybrid surface is successfully conducted and the heat flux is enhanced under different operating conditions via hybrid geometry optimization.

Numerical Simulation of Dropwise Condensation of Steam over Hybrid Surfaces via New Non-Dimensional Heat Transfer Model

Croce G.;Suzzi N.
2023-01-01

Abstract

Dropwise condensation (DWC) of steam over hybrid hydrophobic–hydrophilic surfaces is numerically investigated via a phenomenological, Lagrangian model. The full non-dimensionalization of the heat transfer model, needed to determine the droplet growth, allows for generalization of computational results. Hybrid surfaces characterized by recursive geometries are implemented via the introduction of proper boundary conditions. The numerical size distribution of both the large and the small droplet populations, crucial for development of simplified, statistically sound models, is compared with empirical and theoretical correlations. Then, the validation with experimental data involving DWC over an hybrid surface is successfully conducted and the heat flux is enhanced under different operating conditions via hybrid geometry optimization.
File in questo prodotto:
File Dimensione Formato  
fluids-08-00300.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1269787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact