This study presents a comprehensive analysis of the cholesterol binding mechanism and conformational changes in cyclodextrin (CD) carriers, namely βCD, 2HPβCD, and MβCD. The results revealed that the binding of cholesterol to CDs was spontaneous and thermodynamically favorable, with van der Waals interactions playing a dominant role, while Coulombic interactions have a negligible contribution. The solubility of cholesterol/βCD and cholesterol/MβCD complexes was lower compared to cholesterol/2HPβCD complex due to stronger vdW and Coulombic repulsion between water and CDs. Hydrogen bonding was found to have a minor role in the binding process. The investigation of mechanisms and kinetics of binding demonstrated that cholesterol permeates into the CD cavities completely. Replicas consideration indicated that while the binding to 2HPβCD occurred perpendicularly and solely through positioning cholesterol's oxygen toward the primary hydroxyl rim (PHR), the mechanism of cholesterol binding to βCD and MβCD could take place with the orientation of oxygen towards both rims. Functionalization resulted in decreased cavity polarity, increased constriction tendency, and altered solubility and configuration of the carrier. Upon cholesterol binding, the CDs expanded, increasing the cavity volume in cholesterol-containing systems. The effects of cholesterol on the relative shape anisotropy (κ 2) and asphericity parameter (b) in cyclodextrins were investigated. βCD exhibited a spherical structure regardless of cholesterol presence, while 2HPβCD and MβCD displayed more pronounced non-sphericity in the absence of cholesterol. Loading cholesterol transformed 2HPβCD and MβCD into more spherical shapes, with increased probabilities of higher κ 2. MβCD showed a higher maximum peak of κ 2 compared to 2HPβCD after cholesterol loading, while 2HPβCD maintained a significant maximum peak at 0.2 for b.

Exploring the role of cyclodextrins as a cholesterol scavenger: a molecular dynamics investigation of conformational changes and thermodynamics

Fogolari F.
2023-01-01

Abstract

This study presents a comprehensive analysis of the cholesterol binding mechanism and conformational changes in cyclodextrin (CD) carriers, namely βCD, 2HPβCD, and MβCD. The results revealed that the binding of cholesterol to CDs was spontaneous and thermodynamically favorable, with van der Waals interactions playing a dominant role, while Coulombic interactions have a negligible contribution. The solubility of cholesterol/βCD and cholesterol/MβCD complexes was lower compared to cholesterol/2HPβCD complex due to stronger vdW and Coulombic repulsion between water and CDs. Hydrogen bonding was found to have a minor role in the binding process. The investigation of mechanisms and kinetics of binding demonstrated that cholesterol permeates into the CD cavities completely. Replicas consideration indicated that while the binding to 2HPβCD occurred perpendicularly and solely through positioning cholesterol's oxygen toward the primary hydroxyl rim (PHR), the mechanism of cholesterol binding to βCD and MβCD could take place with the orientation of oxygen towards both rims. Functionalization resulted in decreased cavity polarity, increased constriction tendency, and altered solubility and configuration of the carrier. Upon cholesterol binding, the CDs expanded, increasing the cavity volume in cholesterol-containing systems. The effects of cholesterol on the relative shape anisotropy (κ 2) and asphericity parameter (b) in cyclodextrins were investigated. βCD exhibited a spherical structure regardless of cholesterol presence, while 2HPβCD and MβCD displayed more pronounced non-sphericity in the absence of cholesterol. Loading cholesterol transformed 2HPβCD and MβCD into more spherical shapes, with increased probabilities of higher κ 2. MβCD showed a higher maximum peak of κ 2 compared to 2HPβCD after cholesterol loading, while 2HPβCD maintained a significant maximum peak at 0.2 for b.
File in questo prodotto:
File Dimensione Formato  
s41598-023-49217-8.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.15 MB
Formato Adobe PDF
4.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1269894
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact