This work investigates the rainfall infiltration process within homogeneous and stratified colluvial deposits caused by short (1–3 h) and intense (40–90 mm/h) rainfall, using both analytical and numerical infiltration modelling. The findings of the investigation demonstrate that the classic Green–Ampt model can be employed effectively to study homogeneous colluvial covers with permeability equal to or lower than kw = 10−5 m/s and that are subject to a 1 h rainfall with intensity I ≥ 45–50 mm/h. In these circumstances, a top-down saturation front forms within the colluvial deposit, leading to the saturation of a 70–100 cm-thick layer. This critical condition occurs every 5–10 years in the mountain area of the Friuli Venezia Giulia Region (NE Italy), which corresponds to a lower return period of critical hydrologic events when compared with other mountain basins in the Alps due to the higher initial degree of saturation characterising colluvial covers in this area (70–95%). When analysing stratified colluvial covers, the Dagan–Bresler approximate model, as well as the numerical modelling, emphasised the strong influence that abrupt variations in the permeability of the various soil layers have on the infiltration process at depth. In particular, the presence of a top organic soil horizon that is rich in macro-pores and is characterised by a higher permeability (k = 10−4 m/s) actually reduces the possibility of surficial ponding, which is the basic condition of the “piston” models. The highly permeable top soil allows for a rapid downward infiltration up to contact with the underlying colluvial material, which is less permeable (k = 10−5 m/s). Therefore, a perched water table forms starting from the organic soil–colluvium interface, originating pore–water overpressures within the colluvial deposit, with maximum values in the order of 5–10 kPa.
Rainfall Infiltration through Stratified Colluvial Deposits: Analytical Approach vs. Numerical Modelling
Paronuzzi P.;Bolla A.
2024-01-01
Abstract
This work investigates the rainfall infiltration process within homogeneous and stratified colluvial deposits caused by short (1–3 h) and intense (40–90 mm/h) rainfall, using both analytical and numerical infiltration modelling. The findings of the investigation demonstrate that the classic Green–Ampt model can be employed effectively to study homogeneous colluvial covers with permeability equal to or lower than kw = 10−5 m/s and that are subject to a 1 h rainfall with intensity I ≥ 45–50 mm/h. In these circumstances, a top-down saturation front forms within the colluvial deposit, leading to the saturation of a 70–100 cm-thick layer. This critical condition occurs every 5–10 years in the mountain area of the Friuli Venezia Giulia Region (NE Italy), which corresponds to a lower return period of critical hydrologic events when compared with other mountain basins in the Alps due to the higher initial degree of saturation characterising colluvial covers in this area (70–95%). When analysing stratified colluvial covers, the Dagan–Bresler approximate model, as well as the numerical modelling, emphasised the strong influence that abrupt variations in the permeability of the various soil layers have on the infiltration process at depth. In particular, the presence of a top organic soil horizon that is rich in macro-pores and is characterised by a higher permeability (k = 10−4 m/s) actually reduces the possibility of surficial ponding, which is the basic condition of the “piston” models. The highly permeable top soil allows for a rapid downward infiltration up to contact with the underlying colluvial material, which is less permeable (k = 10−5 m/s). Therefore, a perched water table forms starting from the organic soil–colluvium interface, originating pore–water overpressures within the colluvial deposit, with maximum values in the order of 5–10 kPa.File | Dimensione | Formato | |
---|---|---|---|
geosciences-14-00053-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
8.91 MB
Formato
Adobe PDF
|
8.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.