The numerical and experimental validation of multistable behavior of cantilever shells is addressed. The design of the laminated composite shells is driven by a recently proposed semi-analytical shell model, whose predictions are verified and critically examined by means of finite element simulations and stability tests on two manufactured demonstrators. In addition, the influence of the main design parameters on the shells stability scenario is discussed. Despite its simplicity, the reduced model allows to depict a fairly faithful picture of the stability scenario; therefore, it proves to be a useful tool in the early design stages of morphing shell structures.
Multistable cantilever shells: Analytical prediction, numerical simulation and experimental validation
Brunetti MatteoPrimo
;
2018-01-01
Abstract
The numerical and experimental validation of multistable behavior of cantilever shells is addressed. The design of the laminated composite shells is driven by a recently proposed semi-analytical shell model, whose predictions are verified and critically examined by means of finite element simulations and stability tests on two manufactured demonstrators. In addition, the influence of the main design parameters on the shells stability scenario is discussed. Despite its simplicity, the reduced model allows to depict a fairly faithful picture of the stability scenario; therefore, it proves to be a useful tool in the early design stages of morphing shell structures.File | Dimensione | Formato | |
---|---|---|---|
2018b_Brunetti.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
5.63 MB
Formato
Adobe PDF
|
5.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.