The nonlinear dynamics of cantilever bistable shells with asymmetric stable configurations is investigated. The possibility of maximizing the kinetic energy associated with snap-through motion offered by the considered cantilevered shells is pursued to enhance the sought-after energy harvesting capabilities. Through an experimental campaign under harmonic forcing the resonance scenarios around the stable configurations are analysed. The resulting nonlinear behaviour observed for high amplitude excitation is adopted to guide a reduced order model derivation. By combining the experimental response with two double-well oscillators derived from FE simulations, a double-well quintic oscillator capturing the observed softening behaviour is proposed. It involves a parameter identification phase in which a nonlinear damping model is introduced. A numerical continuation approach is adopted to discuss the local periodic solutions around each stable configuration in terms of resonance curves, bifurcation diagrams and basins of attraction. The global dynamics involving regular and chaotic dynamic regimes as well as snap-through motion is eventually described.
Nonlinear dynamics of bistable composite cantilever shells: An experimental and modelling study
Brunetti Matteo;
2022-01-01
Abstract
The nonlinear dynamics of cantilever bistable shells with asymmetric stable configurations is investigated. The possibility of maximizing the kinetic energy associated with snap-through motion offered by the considered cantilevered shells is pursued to enhance the sought-after energy harvesting capabilities. Through an experimental campaign under harmonic forcing the resonance scenarios around the stable configurations are analysed. The resulting nonlinear behaviour observed for high amplitude excitation is adopted to guide a reduced order model derivation. By combining the experimental response with two double-well oscillators derived from FE simulations, a double-well quintic oscillator capturing the observed softening behaviour is proposed. It involves a parameter identification phase in which a nonlinear damping model is introduced. A numerical continuation approach is adopted to discuss the local periodic solutions around each stable configuration in terms of resonance curves, bifurcation diagrams and basins of attraction. The global dynamics involving regular and chaotic dynamic regimes as well as snap-through motion is eventually described.File | Dimensione | Formato | |
---|---|---|---|
2022a_Brunetti.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
5.08 MB
Formato
Adobe PDF
|
5.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.