Among some promising candidates for high-capacity energy and hydrogen storage is the Lithium-Boron Reactive Hydride Composite System (Li-RHC: 2 LiH + MgB2/2 LiBH4 + MgH2). This system desorbs hydrogen only at relatively high temperatures and presents a two-step series of reactions occurring in different time scales: first, MgH2 desorbs, followed by LiBH4. Hitherto, the dehydrogenation kinetic behavior of such a system has been described for different temperatures at specific values of operative pressure. However, a comprehensive model representing its dehydrogenation kinetic behavior under different operative conditions has not yet been developed. Herein, the separable variable method is applied to develop a comprehensive kinetic model, including the two-step dehydrogenation series reaction. The MgH2 decomposition is described with the one-dimensional interface-controlled reaction rate Johnson-Mehl-Avrami-Erofeyev-Kholmogorov (JMAEK) with a (Pequilibrium/Poperative) pressure functionality and an Arrhenius temperature dependence activation energy of 63 ± 3 kJ/mol H2. The LiBH4 decomposition is modeled applying the autocatalytic Prout-Tompkins model. A novel approach to describe the Prout-Tompkins t0 parameter as a function of the operative temperature and pressure model is proposed. This second reaction step presented a (Pequilibrium – Poperative/Pequilibrium)2 pressure dependence and an Arrhenius temperature dependence with activation energy 94 ± 13 kJ/mol H2. The proposed approach is experimentally and computationally validated, successfully describing the decomposition kinetic behavior of MgH2 and LiBH4 under three-phase gas, liquid and solid environment and shows good agreement between experimental and modeled curves.

Development of a new approach for the kinetic modeling of the lithium reactive hydride composite (Li-RHC) for hydrogen storage under desorption conditions

Capurso, G.;
2023-01-01

Abstract

Among some promising candidates for high-capacity energy and hydrogen storage is the Lithium-Boron Reactive Hydride Composite System (Li-RHC: 2 LiH + MgB2/2 LiBH4 + MgH2). This system desorbs hydrogen only at relatively high temperatures and presents a two-step series of reactions occurring in different time scales: first, MgH2 desorbs, followed by LiBH4. Hitherto, the dehydrogenation kinetic behavior of such a system has been described for different temperatures at specific values of operative pressure. However, a comprehensive model representing its dehydrogenation kinetic behavior under different operative conditions has not yet been developed. Herein, the separable variable method is applied to develop a comprehensive kinetic model, including the two-step dehydrogenation series reaction. The MgH2 decomposition is described with the one-dimensional interface-controlled reaction rate Johnson-Mehl-Avrami-Erofeyev-Kholmogorov (JMAEK) with a (Pequilibrium/Poperative) pressure functionality and an Arrhenius temperature dependence activation energy of 63 ± 3 kJ/mol H2. The LiBH4 decomposition is modeled applying the autocatalytic Prout-Tompkins model. A novel approach to describe the Prout-Tompkins t0 parameter as a function of the operative temperature and pressure model is proposed. This second reaction step presented a (Pequilibrium – Poperative/Pequilibrium)2 pressure dependence and an Arrhenius temperature dependence with activation energy 94 ± 13 kJ/mol H2. The proposed approach is experimentally and computationally validated, successfully describing the decomposition kinetic behavior of MgH2 and LiBH4 under three-phase gas, liquid and solid environment and shows good agreement between experimental and modeled curves.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1275265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact