Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.
Peculiarity of the early metabolomic response in tomato after urea, ammonium or nitrate supply
Lodovici A.Primo
;Buoso S.;Tomasi N.
;Pinton R.;Zanin L.Ultimo
2024-01-01
Abstract
Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0981942824003346-main.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
5.24 MB
Formato
Adobe PDF
|
5.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.