We prove that the Hilbert scheme which parametrises bitangent lines to a general quartic surface is a smooth regular surface with no rational curves and with very ample canonical divisor. We also prove that it is a counterexample to infinitesimal Torelli and that its infinitesimal deformation space has dimension 20.

BITANGENTS TO A QUARTIC SURFACE AND INFINITESIMAL TORELLI

Corvaja P.;Zucconi F.
2024-01-01

Abstract

We prove that the Hilbert scheme which parametrises bitangent lines to a general quartic surface is a smooth regular surface with no rational curves and with very ample canonical divisor. We also prove that it is a counterexample to infinitesimal Torelli and that its infinitesimal deformation space has dimension 20.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1279385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact