The problem of computing periodic solutions can be expressed as a boundary value problem and solved numerically via piecewise collocation. Here, we extend to renewal equations the corresponding method for retarded functional differential equations in (K. Engelborghs et al., SIAM J Sci Comput., 22 (2001), pp. 1593–1609). The theoretical proof of the convergence of the method has been recently provided in (A. Andò and D. Breda, SIAM J Numer Anal., 58 (2020), pp. 3010–3039) for retarded functional differential equations and in (A. Andò and D. Breda, submitted in 2021) for renewal equations and consists in both cases in applying the abstract framework in (S. Maset, Numer Math., 133 (2016), pp. 525–555) to a reformulation of the boundary value problem featuring an infinite-dimensional boundary condition. We show that, in the renewal case, the proof can also be carried out and even simplified when considering the standard formulation, defined by boundary conditions of finite dimension.
Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions
Alessia Ando'
Primo
2021-01-01
Abstract
The problem of computing periodic solutions can be expressed as a boundary value problem and solved numerically via piecewise collocation. Here, we extend to renewal equations the corresponding method for retarded functional differential equations in (K. Engelborghs et al., SIAM J Sci Comput., 22 (2001), pp. 1593–1609). The theoretical proof of the convergence of the method has been recently provided in (A. Andò and D. Breda, SIAM J Numer Anal., 58 (2020), pp. 3010–3039) for retarded functional differential equations and in (A. Andò and D. Breda, submitted in 2021) for renewal equations and consists in both cases in applying the abstract framework in (S. Maset, Numer Math., 133 (2016), pp. 525–555) to a reformulation of the boundary value problem featuring an infinite-dimensional boundary condition. We show that, in the renewal case, the proof can also be carried out and even simplified when considering the standard formulation, defined by boundary conditions of finite dimension.File | Dimensione | Formato | |
---|---|---|---|
wiley.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Non pubblico
Dimensione
406.12 kB
Formato
Adobe PDF
|
406.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.