Background: Dermatophytosis is a prevalent superficial infection caused by filamentous fungi, primarily affecting the skin and/or its appendages. In recent years, there has been a notable increase in mycotic strains resistant to standard antifungal therapies, including Trichophyton indotineae, a dermatophyte of the Trichophyton mentagrophytes complex. This review aims to provide a comprehensive overview of the treatment options for T. indotineae, elucidating their effectiveness in managing this challenging mycotic infection. Methods: For this review, a search was conducted in the PubMed, Scopus, Web of Science, Embase, and Google Scholar databases, encompassing all published data until March 2024. English-language articles detailing therapy outcomes for patients confirmed to be affected by T. indotineae, identified through molecular analysis, were included. Results: Itraconazole was shown to be a good therapeutic choice, particularly when administered at a dosage of 200 mg/day for 1–12 weeks. Voriconazole was also demonstrated to be effective, while terbinafine exhibited a reduced response rate. Griseofulvin and fluconazole, on the other hand, were found to be ineffective. Although topical treatments were mostly ineffective when used alone, they showed promising results when used in combination with systemic therapy. Mutational status was associated with different profiles of treatment response, suggesting the need for a more tailored approach. Conclusions: When managing T. indotineae infections, it is necessary to optimize therapy to mitigate resistances and relapse. Combining in vitro antifungal susceptibility testing with mutational analysis could be a promising strategy in refining treatment selection.

Trichophyton indotineae, an Emerging Drug-Resistant Dermatophyte: A Review of the Treatment Options

Zerbato V.;Stinco G.;Errichetti E.;Zelin E.
2024-01-01

Abstract

Background: Dermatophytosis is a prevalent superficial infection caused by filamentous fungi, primarily affecting the skin and/or its appendages. In recent years, there has been a notable increase in mycotic strains resistant to standard antifungal therapies, including Trichophyton indotineae, a dermatophyte of the Trichophyton mentagrophytes complex. This review aims to provide a comprehensive overview of the treatment options for T. indotineae, elucidating their effectiveness in managing this challenging mycotic infection. Methods: For this review, a search was conducted in the PubMed, Scopus, Web of Science, Embase, and Google Scholar databases, encompassing all published data until March 2024. English-language articles detailing therapy outcomes for patients confirmed to be affected by T. indotineae, identified through molecular analysis, were included. Results: Itraconazole was shown to be a good therapeutic choice, particularly when administered at a dosage of 200 mg/day for 1–12 weeks. Voriconazole was also demonstrated to be effective, while terbinafine exhibited a reduced response rate. Griseofulvin and fluconazole, on the other hand, were found to be ineffective. Although topical treatments were mostly ineffective when used alone, they showed promising results when used in combination with systemic therapy. Mutational status was associated with different profiles of treatment response, suggesting the need for a more tailored approach. Conclusions: When managing T. indotineae infections, it is necessary to optimize therapy to mitigate resistances and relapse. Combining in vitro antifungal susceptibility testing with mutational analysis could be a promising strategy in refining treatment selection.
File in questo prodotto:
File Dimensione Formato  
jcm-13-03558-v2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 406.01 kB
Formato Adobe PDF
406.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1280867
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact