We investigate the morphodynamics of an ice layer over a turbulent stream of warm water using numerical simulations. At low water speeds, characteristic streamwise undulations appear, which can be explained by the Reynolds analogy between heat and momentum transfer. As the water speed increases, these undulations combine with spanwise ripples of a much greater length scale. These ripples are generated by a melting mechanism controlled by the instability originating from the ice–water interactions, and, through a melting/freezing process, they evolve downstream with a migration velocity much slower than the turbulence characteristic velocity.

Morphodynamics of melting ice over turbulent warm water streams

Perissutti D.;Marchioli C.;Soldati A.
2024-01-01

Abstract

We investigate the morphodynamics of an ice layer over a turbulent stream of warm water using numerical simulations. At low water speeds, characteristic streamwise undulations appear, which can be explained by the Reynolds analogy between heat and momentum transfer. As the water speed increases, these undulations combine with spanwise ripples of a much greater length scale. These ripples are generated by a melting mechanism controlled by the instability originating from the ice–water interactions, and, through a melting/freezing process, they evolve downstream with a migration velocity much slower than the turbulence characteristic velocity.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301932224002842-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1291950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact