: Wildfires have high frequency and intensity in the Mediterranean ecosystems that deeply modify the soil abiotic (i.e., pH, contents of water, organic matter and elements) and biotic properties (i.e., biomass and activity). In 2017, an intense wildfire occurred inside the Vesuvius National Park (Southern Italy), destroying approximately 50% of the existing plant cover. So, the research aimed to evaluate the fire effects on soil quality through single soil abiotic and biotic indicators and through an integrated index (SQI). To achieve the aim, soil samples were collected inside the Vesuvius National Park at 12 sampling field points before fire (BF) and after fire (AF). The findings highlighted that in AF soil, the contents of water and total carbon, element availability, respiration and the dehydrogenase activity were lower than in BF soil; in contrast, pH and hydrolase activity were significantly higher in AF soil. The microbial biomass and activity were affected by Al, Cr and Cu availability in both BF and AF soils. Despite the variations in each investigated soil abiotic and biotic property that occurred in AF soil, the overall soil quality did not significantly differ as compared to that calculated for the BF soil. The findings provide a contribution to the baseline definition of the properties and quality of burnt soil and highlight the short-term effects of fire on volcanic soil in the Mediterranean area.
Do wildfires cause changes in soil quality in the short term?
Panico, S. C.;
2020-01-01
Abstract
: Wildfires have high frequency and intensity in the Mediterranean ecosystems that deeply modify the soil abiotic (i.e., pH, contents of water, organic matter and elements) and biotic properties (i.e., biomass and activity). In 2017, an intense wildfire occurred inside the Vesuvius National Park (Southern Italy), destroying approximately 50% of the existing plant cover. So, the research aimed to evaluate the fire effects on soil quality through single soil abiotic and biotic indicators and through an integrated index (SQI). To achieve the aim, soil samples were collected inside the Vesuvius National Park at 12 sampling field points before fire (BF) and after fire (AF). The findings highlighted that in AF soil, the contents of water and total carbon, element availability, respiration and the dehydrogenase activity were lower than in BF soil; in contrast, pH and hydrolase activity were significantly higher in AF soil. The microbial biomass and activity were affected by Al, Cr and Cu availability in both BF and AF soils. Despite the variations in each investigated soil abiotic and biotic property that occurred in AF soil, the overall soil quality did not significantly differ as compared to that calculated for the BF soil. The findings provide a contribution to the baseline definition of the properties and quality of burnt soil and highlight the short-term effects of fire on volcanic soil in the Mediterranean area.File | Dimensione | Formato | |
---|---|---|---|
ijerph-17-05343-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.