Blind image super-resolution (SR) aims to recover a high-resolution (HR) image from its low-resolution (LR) counterpart under the assumption of unknown degradations. Many existing blind SR methods rely on supervising ground-truth kernels referred to as explicit degradation estimators. However, it is very challenging to obtain the ground-truths for different degradations kernels. Moreover, most of these methods rely on heavy backbone networks, which demand extensive computational resources. Implicit degradation estimators do not require the availability of ground truth kernels, but they see a significant performance gap with the explicit degradation estimators due to such missing information. We present a novel approach that significantly narrows such a gap by means of a lightweight architecture that implicitly learns the degradation kernel with the help of a novel loss component. The kernel is exploited by a learnable Wiener filter that performs efficient deconvolution in the Fourier domain by deriving a closed-form solution. Inspired by prompt-based learning, we also propose a novel degradation-conditioned prompt layer that exploits the estimated kernel to drive the focus on the discriminative contextual information that guides the reconstruction process in recovering the latent HR image. Extensive experiments under different degradation settings demonstrate that our model, named PL-IDENet, yields PSNR and SSIM improvements of more than $0.4dB$ and 1.3%, and $1.4dB$ and 4.8% to the best implicit and explicit blind-SR method, respectively. These results are achieved while maintaining a substantially lower number of parameters/FLOPs (i.e., 25% and 68% fewer parameters than best implicit and explicit methods, respectively).

Lightweight Prompt Learning Implicit Degradation Estimation Network for Blind Super Resolution

Khan, Asif Hussain
;
Micheloni, Christian;Martinel, Niki
2024-01-01

Abstract

Blind image super-resolution (SR) aims to recover a high-resolution (HR) image from its low-resolution (LR) counterpart under the assumption of unknown degradations. Many existing blind SR methods rely on supervising ground-truth kernels referred to as explicit degradation estimators. However, it is very challenging to obtain the ground-truths for different degradations kernels. Moreover, most of these methods rely on heavy backbone networks, which demand extensive computational resources. Implicit degradation estimators do not require the availability of ground truth kernels, but they see a significant performance gap with the explicit degradation estimators due to such missing information. We present a novel approach that significantly narrows such a gap by means of a lightweight architecture that implicitly learns the degradation kernel with the help of a novel loss component. The kernel is exploited by a learnable Wiener filter that performs efficient deconvolution in the Fourier domain by deriving a closed-form solution. Inspired by prompt-based learning, we also propose a novel degradation-conditioned prompt layer that exploits the estimated kernel to drive the focus on the discriminative contextual information that guides the reconstruction process in recovering the latent HR image. Extensive experiments under different degradation settings demonstrate that our model, named PL-IDENet, yields PSNR and SSIM improvements of more than $0.4dB$ and 1.3%, and $1.4dB$ and 4.8% to the best implicit and explicit blind-SR method, respectively. These results are achieved while maintaining a substantially lower number of parameters/FLOPs (i.e., 25% and 68% fewer parameters than best implicit and explicit methods, respectively).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1292773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact