We analyze the time series of the temperature of the sedimentary core MD01-2443 originating from the Iberian Margin with a duration of 420 kyr. The series has been tested for unit-root and a long term trend is estimated. We identify four significant periodicities together with a low climatic activity every 100 kyr, and these were associated with internal and external forcings. Also, we identify a high-frequency fast component that acts on top of a nonlinear, irreversible slow-changing dynamics. We find the presence of chaos in the climate of the Iberian Margin by means of a neural network asymptotic test on the largest Lyapunov exponent. The analysis suggests that the chaotic dynamics is associated with the fast high-frequency component. We also carry out a statistical analysis of the dimensionality of the attractor. Our results confirm the possibility that periodic behavior and chaos may coexist on different time scales. This could lead to different degrees of predictability in the climate system according to the characteristic time scales and/or phase-space locations.

Chaos and periodicities in a climatic time series of the Iberian Margin

Giannerini, Simone;
2020-01-01

Abstract

We analyze the time series of the temperature of the sedimentary core MD01-2443 originating from the Iberian Margin with a duration of 420 kyr. The series has been tested for unit-root and a long term trend is estimated. We identify four significant periodicities together with a low climatic activity every 100 kyr, and these were associated with internal and external forcings. Also, we identify a high-frequency fast component that acts on top of a nonlinear, irreversible slow-changing dynamics. We find the presence of chaos in the climate of the Iberian Margin by means of a neural network asymptotic test on the largest Lyapunov exponent. The analysis suggests that the chaotic dynamics is associated with the fast high-frequency component. We also carry out a statistical analysis of the dimensionality of the attractor. Our results confirm the possibility that periodic behavior and chaos may coexist on different time scales. This could lead to different degrees of predictability in the climate system according to the characteristic time scales and/or phase-space locations.
File in questo prodotto:
File Dimensione Formato  
063126_1_online.pdf

non disponibili

Licenza: Non pubblico
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1293380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact