In this paper we study the performance of the most popular bootstrap schemes for multilevel data. Also, we propose a modied version of the wild bootstrap procedure for hierarchical data structures. The wild bootstrap does not require homoscedasticity or assumptions on the distribution of the error processes. Hence, it is a valuable tool for robust inference in a multilevel framework. We assess the nite size performances of the schemes through a Monte Carlo study. The results show that for big sample sizes it always pays o to adopt an agnostic approach as the wild bootstrap outperforms other techniques.
The wild bootstrap for multilevel models
GIANNERINI, SIMONE
2015-01-01
Abstract
In this paper we study the performance of the most popular bootstrap schemes for multilevel data. Also, we propose a modied version of the wild bootstrap procedure for hierarchical data structures. The wild bootstrap does not require homoscedasticity or assumptions on the distribution of the error processes. Hence, it is a valuable tool for robust inference in a multilevel framework. We assess the nite size performances of the schemes through a Monte Carlo study. The results show that for big sample sizes it always pays o to adopt an agnostic approach as the wild bootstrap outperforms other techniques.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Modugno_Giannerini_LSTA_2015.pdf
non disponibili
Licenza:
Non pubblico
Dimensione
533.11 kB
Formato
Adobe PDF
|
533.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.