In this paper we study the performance of the most popular bootstrap schemes for multilevel data. Also, we propose a modied version of the wild bootstrap procedure for hierarchical data structures. The wild bootstrap does not require homoscedasticity or assumptions on the distribution of the error processes. Hence, it is a valuable tool for robust inference in a multilevel framework. We assess the nite size performances of the schemes through a Monte Carlo study. The results show that for big sample sizes it always pays o to adopt an agnostic approach as the wild bootstrap outperforms other techniques.

The wild bootstrap for multilevel models

GIANNERINI, SIMONE
2015-01-01

Abstract

In this paper we study the performance of the most popular bootstrap schemes for multilevel data. Also, we propose a modied version of the wild bootstrap procedure for hierarchical data structures. The wild bootstrap does not require homoscedasticity or assumptions on the distribution of the error processes. Hence, it is a valuable tool for robust inference in a multilevel framework. We assess the nite size performances of the schemes through a Monte Carlo study. The results show that for big sample sizes it always pays o to adopt an agnostic approach as the wild bootstrap outperforms other techniques.
File in questo prodotto:
File Dimensione Formato  
Modugno_Giannerini_LSTA_2015.pdf

non disponibili

Licenza: Non pubblico
Dimensione 533.11 kB
Formato Adobe PDF
533.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1293419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact