This paper introduces a model for rating a firm’s default risk based on fuzzy logic and expert system and an associated model of sensitivity analysis (SA) for managerial purposes. The rating model automatically replicates the evaluation process of default risk performed by human experts. It makes use of a modular approach based on rules blocks and conditional implications. The SA model investigates the change in the firm’s default risk under changes in the model inputs and employs recent results in the engineering literature of Sensitivity Analysis. In particular, it (i) allows the decomposition of the historical variation of default risk, (ii) identifies the most relevant parameters for the risk variation, and (iii) suggests managerial actions to be undertaken for improving the firm’s rating.
Rating firms and sensitivity analysis
Marchioni, Andrea;
2020-01-01
Abstract
This paper introduces a model for rating a firm’s default risk based on fuzzy logic and expert system and an associated model of sensitivity analysis (SA) for managerial purposes. The rating model automatically replicates the evaluation process of default risk performed by human experts. It makes use of a modular approach based on rules blocks and conditional implications. The SA model investigates the change in the firm’s default risk under changes in the model inputs and employs recent results in the engineering literature of Sensitivity Analysis. In particular, it (i) allows the decomposition of the historical variation of default risk, (ii) identifies the most relevant parameters for the risk variation, and (iii) suggests managerial actions to be undertaken for improving the firm’s rating.File | Dimensione | Formato | |
---|---|---|---|
Magni Malagoli Marchioni Mastroleo 2020.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non pubblico
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.