Let ∆_G be a sublaplacian on a Carnot group, and let μ be a local measure on the open set Ω ⊂ G. If u ∈ L^1_{loc}(Ω) is such that −∆_Gu = μ, u ≥ 0 on Ω, then μ_c ≥ 0, where μ_c is the concentrated component of μ with respect to the G-capacity. This extends to the Carnot group setting a result contained in [9].

A note on the inverse maximum principle on Carnot groups

Lorenzo D’Ambrosio
;
2024-01-01

Abstract

Let ∆_G be a sublaplacian on a Carnot group, and let μ be a local measure on the open set Ω ⊂ G. If u ∈ L^1_{loc}(Ω) is such that −∆_Gu = μ, u ≥ 0 on Ω, then μ_c ≥ 0, where μ_c is the concentrated component of μ with respect to the G-capacity. This extends to the Carnot group setting a result contained in [9].
File in questo prodotto:
File Dimensione Formato  
invmax24-09-30.pdf

non disponibili

Descrizione: File accettato
Tipologia: Documento in Post-print
Licenza: Non pubblico
Dimensione 466.89 kB
Formato Adobe PDF
466.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1294984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact