Let ∆_G be a sublaplacian on a Carnot group, and let μ be a local measure on the open set Ω ⊂ G. If u ∈ L^1_{loc}(Ω) is such that −∆_Gu = μ, u ≥ 0 on Ω, then μ_c ≥ 0, where μ_c is the concentrated component of μ with respect to the G-capacity. This extends to the Carnot group setting a result contained in [9].
A note on the inverse maximum principle on Carnot groups
Lorenzo D’Ambrosio
;
2024-01-01
Abstract
Let ∆_G be a sublaplacian on a Carnot group, and let μ be a local measure on the open set Ω ⊂ G. If u ∈ L^1_{loc}(Ω) is such that −∆_Gu = μ, u ≥ 0 on Ω, then μ_c ≥ 0, where μ_c is the concentrated component of μ with respect to the G-capacity. This extends to the Carnot group setting a result contained in [9].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RIMUT_2025_3_DAmbrosio_DOI.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
379.72 kB
Formato
Adobe PDF
|
379.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.