The dynamic modulus (∣ (Formula presented.) ∣) is a fundamental mechanical parameter for studying the performance of hot mix asphalt and simulating its viscoelastic behaviour under different loading and thermal conditions. It is a primary tool to replicate road surface behaviour under vehicle traffic loading and temperature variations. Though, laboratory testing to determine this parameter is time-consuming and costly. Several predictive models have been developed to estimate the dynamic modulus, ranging from rheological to empirical regression models. This research was dedicated to studying two predictive models for determining the master curve of the dynamic modulus of hot mix asphalt used in a regular pavement binder course containing different reclaimed asphalt contents (0%, 30%, 40%, and 50%). Laboratory experiments were conducted to assess their accuracy. The results show that Witczak’s sigmoid function provided the best accuracy for the master curves, while the Generalized Huet-Sayegh (2S2P1D) model showed less accurate predictions, particularly at the range of low and high frequencies.

Accuracy of Dynamic Modulus Models of Asphalt Mixtures Containing Reclaimed Asphalt (RA)

Baldo N.
2024-01-01

Abstract

The dynamic modulus (∣ (Formula presented.) ∣) is a fundamental mechanical parameter for studying the performance of hot mix asphalt and simulating its viscoelastic behaviour under different loading and thermal conditions. It is a primary tool to replicate road surface behaviour under vehicle traffic loading and temperature variations. Though, laboratory testing to determine this parameter is time-consuming and costly. Several predictive models have been developed to estimate the dynamic modulus, ranging from rheological to empirical regression models. This research was dedicated to studying two predictive models for determining the master curve of the dynamic modulus of hot mix asphalt used in a regular pavement binder course containing different reclaimed asphalt contents (0%, 30%, 40%, and 50%). Laboratory experiments were conducted to assess their accuracy. The results show that Witczak’s sigmoid function provided the best accuracy for the master curves, while the Generalized Huet-Sayegh (2S2P1D) model showed less accurate predictions, particularly at the range of low and high frequencies.
File in questo prodotto:
File Dimensione Formato  
applsci-14-10505.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.24 MB
Formato Adobe PDF
9.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1296989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact