We consider the first order connection formulation of 4D general relativity in the "orthogonal" gauge. We show how the partial gauge fixing of the phase space canonical coordinates leads to the appearance of second class constraints in the theory. We employ the gauge unfixing procedure in order to successfully complete the Dirac treatment of the system. While equivalent to the inversion of the Dirac matrix, the gauge unfixing allows us to work directly with the reduced phase space and the ordinary Poisson bracket. At the same time, we explicitly derive the new set of residual first class constraints preserving the partial gauge fixing, which are linear combinations of the original constraints, and these turn out to contain nonlinear terms. While providing an explicit example of how to consistently recast general relativity in a given partial gauge, the main motivation of this classical analysis is the application of the Quantum Reduced Loop Gravity program to a Schwarzschild black hole geometry.

Orthogonal gauge fixing of first order gravity

Daniele Pranzetti
2018-01-01

Abstract

We consider the first order connection formulation of 4D general relativity in the "orthogonal" gauge. We show how the partial gauge fixing of the phase space canonical coordinates leads to the appearance of second class constraints in the theory. We employ the gauge unfixing procedure in order to successfully complete the Dirac treatment of the system. While equivalent to the inversion of the Dirac matrix, the gauge unfixing allows us to work directly with the reduced phase space and the ordinary Poisson bracket. At the same time, we explicitly derive the new set of residual first class constraints preserving the partial gauge fixing, which are linear combinations of the original constraints, and these turn out to contain nonlinear terms. While providing an explicit example of how to consistently recast general relativity in a given partial gauge, the main motivation of this classical analysis is the application of the Quantum Reduced Loop Gravity program to a Schwarzschild black hole geometry.
File in questo prodotto:
File Dimensione Formato  
PRD-Orthogonal gauge fixing of first order gravity.pdf

accesso aperto

Licenza: Creative commons
Dimensione 219.79 kB
Formato Adobe PDF
219.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11390/1300852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact